
4.5 (Standard) Amplitude modulation: AM

4.61. DSB-SC amplitude modulation (which is summarized in Figure 26)
is easy to understand and analyze in both time and frequency domains.
However, analytical simplicity is not always accompanied by an equivalent
simplicity in practical implementation.

1

×

 2 cos 2 cf t

Modulator

Message
(modulating signal)

Figure 26: DSB-SC modulation.

Problem: The (coherent) demodulation of DSB-SC signal requires the
receiver to possess a carrier signal that is synchronized with the incoming
carrier. This requirement is not easy to achieve in practice because the
modulated signal may have traveled hundreds of miles and could even suffer
from some unknown frequency shift.

4.62. If a carrier component is transmitted along with the DSB signal,
demodulation can be simplified.

(a) The received carrier component can be extracted using a narrowband
bandpass filter and can be used as the demodulation carrier. (There is
no need to generate a carrier at the receiver.)

(b) If the carrier amplitude is sufficiently large, the need to generate a
demodulation carrier can be avoided completely.

� This will be the focus of this section.

74



Definition 4.63. For AM, the transmitted signal is typically defined as

xAM (t) = (A+m (t)) cos (2πfct) = A cos (2πfct)︸ ︷︷ ︸
carrier

+m (t) cos (2πfct)︸ ︷︷ ︸
sidebands

Assumptions for m(t):

(a) Band-limited to B; that is, |M(f)| = 0 for |f | > B.

(b) Bounded between −mp and mp; that is, |m(t)| ≤ mp.

4.64. Spectrum of xAM (t):

� Basically the same as that of DSB-SC signal except for the two addi-
tional impulses (discrete spectral component) at the carrier frequency
±fc.

◦ This is why we say the DSB-SC system is a suppressed carrier
system.

Definition 4.65. Consider a signal A(t) cos(2πfct). If A(t) varies slowly in
comparison with the sinusoidal carrier cos(2πfct), then the envelope E(t)
of A(t) cos(2πfct) is |A(t)|.

4.66. Envelope of AM signal : For AM signal, A(t) ≡ A+m(t) and

E(t) = |A+m(t)| .

See Figure 27.

Case (a) If ∀t, A(t) > 0, then E(t) = A(t) = A+m(t)

� The envelope has the same shape as m(t).

� Enable envelope detection: Extract m(t) from the envelope.
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Case (b) If ∃t, A(t) < 0, then E(t) 6= A(t).

� The envelope shape differs from the shape of m(t) because the
negative part of A+m(t) is rectified.

◦ This is referred to as phase reversal and envelope distortion.

t

t

t

t

t

A
A

Case (a) Case (b)

≡ 0 for	all	 ≡ 0 for	some	

AM cos 2

Figure 27: AM signal and its envelope [6, Fig 4.8]

Definition 4.67. The positive constant

µ ≡
max
t

(envelope of the sidebands)

max
t

(envelope of the carrier)
=

max
t
|m (t)|

max
t
|A|

=
mp

A

is called the modulation index.

� The quantity µ×100% is often referred to as the percent modulation.
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Example 4.68. Suppose m(t) is plotted below. Assume that the carrier
frequency fc is large enough. Plot the corresponding AM signal xAM(t) when
the modulation index is (a) 50%, (b) 100%, and (c) 150%.
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Example 4.69. Consider an AM transmission of the message m(t) shown
below. Two corresponding AM signals are plotted. All plots in this example
are shown over the same time interval. Determine the modulation index used
in each signal.

 
Consider an AM transmission of the message ( )m t  shown below: 

  
 

 
1. In each part below, the AM signal is plotted. Determine the modulation index used in each case.  

 

 (a) (b) 
 
 

t

4

4

𝑚 𝑡

t

9

9

𝑥 𝑡

t

2

𝑥 𝑡

Solution :

ECS 332: In-Class Exercise # 13 - Sol 

Instructions 
1. Separate into groups of no more than three students each. The group cannot be the 

same as any of your former groups after the midterm. 

2. [ENRE] Explanation is not required for this exercise. 

3. Do not panic.   

 

Consider an AM transmission of the message ( )m t  shown below: 

  
 

1. Assume that the carrier frequency fc is large (enough). Plot the corresponding AM signal ( )AMx t  when the 

modulation index is 40% 

 
 

2. In each part below, the AM signal is plotted. Determine the modulation index used in each case.  
 

(a) 

 

(b) 

 
𝐴 +𝑚𝑝 = 9 

𝐴 + 4 = 9 

𝐴 = 5 

𝜇 =
𝑚𝑝

𝐴
=
4

5
= 0.8 = 80% 

𝐴 −𝑚𝑝 = −2 

𝐴 − 4 = −2 

𝐴 = 2 

𝜇 =
𝑚𝑝

𝐴
=
4

2
= 2 = 200% 

t

4

−4

𝑚  

t

𝐴 =  0

𝐴 +𝑚𝑝 =  4

𝐴 −𝑚𝑝 =  

− 0

− 

− 4

t

9

−9

   

𝐴 +𝑚𝑝

t

−2

   

𝐴 −𝑚𝑝

Date: _ _ / _ _ / 2019 
 

Name ID (last 3 digits) 

Prapun 5 5 5 

    

    

1 8   1 0 
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Example 4.70. Consider a sinusoidal (pure-tone) messagem(t) = Am cos(2πfmt).
Suppose A = 1. Then, µ = Am. Figure 28 shows the effect of changing the
modulation index on the modulated signal.

1

Time

50% Modulation

0

−1.5

1.5

−0.5

0.5

Time

100% Modulation

0

−2

2

Envelope
Modulated Signal

Time

150% Modulation

0

−2.5

2.5

−0.5

0.5

Figure 28: Modulated signal in standard AM with sinusoidal message

4.71. It should be noted that the ratio that defines the modulation index
compares the maximum of the two envelopes. In other references, the nota-
tion for the AM signal may be different but the idea (and the corresponding
motivation) that defines the modulation index remains the same.

� In the texbook by Carlson and Crilly, [3, p 163], it is assumed that m(t)
is already scaled or normalized to have a magnitude not exceeding unity
(|m(t)| ≤ 1) [3, p 163]. There,

xAM (t) = Ac (1 + µm (t)) cos (2πfct) = Ac cos (2πfct)︸ ︷︷ ︸
carrier

+Acµm (t) cos (2πfct)︸ ︷︷ ︸
sidebands

.
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◦ mp = 1

◦ The modulation index is then

max
t

(envelope of the sidebands)

max
t

(envelope of the carrier)
=

max
t
|Acµm (t)|

max
t
|Ac|

=
|Acµ|
|Ac|

= µ.

� In [15, p 116],

xAM (t) = Ac

(
1 + µ

m (t)

mp

)
cos (2πfct) = Ac cos (2πfct)︸ ︷︷ ︸

carrier

+Acµ
m (t)

mp
cos (2πfct)︸ ︷︷ ︸

sidebands

.

◦ The modulation index is then

max
t

(envelope of the sidebands)

max
t

(envelope of the carrier)
=

max
t

∣∣∣Acµm(t)
mp

∣∣∣
max
t
|Ac|

=
|Ac|µmpmp
|Ac|

= µ.

4.72. Power of the transmitted signals.

(a) In DSB-SC system, recall, from 4.41, that, when

x(t) = m(t) cos(2πfct)

with fc sufficiently large, we have

Px =
1

2
Pm.

All transmitted power are in the sidebands which contain message in-
formation.

(b) In AM system,

xAM (t) = A cos (2πfct)︸ ︷︷ ︸
carrier

+m (t) cos (2πfct)︸ ︷︷ ︸
sidebands

.

If we assume that the average of m(t) is 0 (no DC component), then the
spectrum of the sidebandsm(t) cos(2πfct+θ) and the carrierA cos(2πfct+
θ) are non-overlapping in the frequency domain. Hence, when fc is suf-
ficiently large

Px =
1

2
A2 +

1

2
Pm.
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� Efficiency:

� For high power efficiency, we want small
m2
p

µ2Pm
.

◦ By definition, |m(t)| ≤ mp. Therefore,
m2
p

Pm
≥ 1.

◦ Want µ to be large. However, when µ > 1, we have phase
reversal. So, the largest value of µ is 1.

◦ The best power efficiency we can achieved is then 50%.

� Conclusion: at least 50% (and often close to 2/3[3, p. 176]) of
the total transmitted power resides in the carrier part which is
independent of m(t) and thus conveys no message information.

Example 4.73. Continue from Example 4.69. Suppose m(t) is a periodic
triangular wave with average power

〈
m2(t)

〉
= 16

3 . Calculate the correspond-
ing value of the power efficiency for each case.
Solution :

ECS 332: In-Class Exercise # 14 - Sol 

Instructions 
1. Separate into groups of no more than three students each. The group cannot be the 

same as any of your former groups after the midterm. 
2. Write down all the steps that you have done to obtain your answers. You may not get 

full credit even when your answer is correct without showing how you get your answer. 
3. Do not panic.   

 

1. Continue from the previous in-class exercise. We considered AM transmission of the message ( )m t   
shown on the left below. 

 
The middle and the rightmost plots show two AM signals 1( )x t  and 2 ( )x t  produced by using two 

different values of modulation index. During the previous in-class exercise, we have calculated the 
values of A and  . They are summarized in the table below. 

Suppose ( )m t  is a periodic triangular wave with average power 2 16
( )

3
m t  .  

Calculate the corresponding value of the power efficiency for each case.  
 

AM ( )x t  A    Power Efficiency 

1( )x t  5 80% Eff

𝑃
2

𝐴
2

𝑃
2

1
𝐴
𝑃 1

1
5
16/3 1

16
91

0.1758 17.58% 

2 ( )x t  2 200% Eff

𝑃
2

𝐴
2

𝑃
2

1
𝐴
𝑃 1

1
2
16/3 1

4
7

0.5714 57.14% 

 
2. [ENRPr] Consider a rectifier demodulator shown below: 

 

 
Assume that ( )m t  has 0 average and that it is band-limited to 5B   kHz.  

The frequency response of the LPF is   , ,

0, otherwise.LPF
g f B

H f
 

 


 

Assume that ( ) 4m t    at all time.  
Find the value of the gain g  which makes ˆ ( ) ( )m t m t :  

g   

 

t

4

4

𝑚 𝑡

t

9

9

𝑥 𝑡

t

2

𝑥 𝑡

LPFHWR DC
Blocking

𝑚 𝑡

Rectifier Demodulator

4 𝑚 𝑡 cos 4 10 𝜋𝑡

Date: _ _ / _ _ / 2019 

Name ID (last 3 digits)

Prapun 5 5 5

𝐴 𝑡  

In class, we have shown that, if 𝐴 𝑡 is always nonnegative, this 
combination is equivalent to a switching demodulator whose ON time is 
synchronized to the nonnegative part of the incoming sinusoidal signal. 

Furthermore, the output is  𝐴 𝑡 . Here, 

𝐴 𝑡 4 𝑚 𝑡 . Therefore, the output of 

this part is  𝑚 𝑡 . 

Finally, the DC blocking box removes the DC 

component. Here, because we assume that 

〈𝑚 𝑡 〉 0, the DC component is 

〈
4𝑔
𝜋

𝑔
𝜋
𝑚 𝑡 〉

4𝑔
𝜋

𝑔
𝜋
〈𝑚 𝑡 〉

4𝑔
𝜋
. 

So,  

𝑚 𝑡
4𝑔
𝜋

𝑔
𝜋
𝑚 𝑡

4𝑔
𝜋

𝑔
𝜋
𝑚 𝑡 . 

To make 𝑚 𝑡 𝑚 𝑡 , we need 𝑔 𝜋. 

𝜋 

LPF𝐴 𝑡 cos 2𝜋𝑓 𝑡
𝑔

𝐴 𝑡

𝑓 2𝐵
HWR𝐴 𝑡 0

𝐴 𝑡 is bandlimited to 𝐵.

2 5   1 0
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